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Abstract: Strategic deterrence operates in and on a vast interstate network of rational actors seeking to minimize risk.  

Risk can be minimized by employing a likelihood ratio test (LRT) derived from Bayes’ Theorem. The LRT 

is comprised of prior, detection, and false-alarm probabilities.  The power-law, known for its applicability to 

complex systems, has been used to model the distribution of combat fatalities.  However, it cannot be used as 

a Bayesian prior for war when its area is unbounded.  Analytics applied to Correlates of War data reveals that 

combat fatalities follow a log-gamma or log-normal probability distribution depending on a state’s escalation 

strategy.  Results are used to show that nuclear war level fatalities pose increasing risk despite decreasing 

probability, that LRT-based decisions can minimize attack risk if an upper limit of impending fatalities is 

indicated by the detection system and commensurate with nominal false-alarm maximum, and that only 

successful defensive strategies are stable. 

1 INTRODUCTION 

Reflecting on how much the world and warfare have 
changed, famed political scientist Sir Lawrence 
Freedman observed that “there is no longer a 
dominant model for future war, but instead a blurred 
concept and a range of speculative possibilities” 
(Freedman, 2017). Strategists and politicians have 
proven unimpressive in predicting the circumstances 
and outcomes of wars, and the international arena has 
only become more complex. With the aim of 
maintaining peace, scholars and practitioners will 
over time narrow the possibilities and bring the 
concept of war into focus.  Meanwhile, some truths 
will remain invariant.  Among them, nations make 
decisions based on likelihoods derived from past 
experiences, not on mere reasoned possibilities.  And 
despite the differences between, say, the Russo-
Japanese War and a future nuclear war, they will be 
inextricably linked by at least one quantitative 
measure: combat fatalities.   

War is by no means a solely rational endeavour.  
Nevertheless, when faced with the prospect of 
expending resources and lives, possibly risking its 
very existence, nation states will attempt to weigh the 
consequences of action and inaction in order to 
minimize risk. Given the uncertainties described by 
Freedman, the immense potential death toll of nuclear 
war, and human propensity for error under duress, 
understanding risk when considering evidence that an 

attack is imminent or underway is essential to sustain 
the two “grounds for making peace: the first is the 
improbability of victory; the second is its 
unacceptable cost” (von Clausewitz, 1976) 

The power-law of statistics, known for its 
applicability to complex systems (Sornette, 2007), 
has been used since the 1950s to study violent conflict 
(Richardson, 1960).  A phenomenon may be 
probabilistically distributed according to the power-
law if the logarithm of the exceedance probability  
𝑃(𝑆 > 𝑠) plotted against the logarithm of severity s 
appears as a straight line with a negative slope –q.  
Intuitively this means that the probability of 
exponentially increasing consequences is decreasing 
exponentially.  However, researchers consistently 
report that the power-law’s exponential parameter q 
for the severity of war measured in deaths is less than 
one, indicating that the exceedance probability 
decreases slower than the increase in number of 
deaths. Given that risk is probability multiplied by 
consequences, this means that the risk of war forever 
increases for increasing fatalities.  It is a condition 
that makes the power-law invalid as a probability 
distribution because the area under the 𝑃(𝑆 > 𝑠) 
curve is unbounded and the mean is divergent.   

Military deterrence is a function of rational actors 
seeking to minimize military risk within a vast and 
adversarial international system.  These actors can 
minimize risk by applying a likelihood ratio test 
(LRT), derived from a dichotomous form of Bayes’ 
Theorem, to a series of hypothesis tests weighing the 



 

 

risk of action versus inaction.  Before applying an 
LRT, however, there must be a probability on which 
to base the test.  For war, the power-law cannot be 
used given that  𝑞 < 1.  The aim of this research is to 
identify a valid probability for the severity of war that 
could be used in a Bayesian-derived LRT, and then 
draw conclusions advancing the field of strategic 
deterrence, with particular focus on detection and 
false-alarm probabilities in the context of attack 
warning.   

2 RISK-INFORMED DECISIONS 

Risk-informed decision-making requires the ability to 

prioritize decisions according to their quantitative 

risks.  The field of probabilistic risk assessment has 

over the years led to a standard definition of risk, 

which is the expected cost of an event equal to the 

sum of the products of the consequences multiplied 

by their probabilities (Advisory Committee on 

Reactor Safeguards, 2000).  The simplest risk-

informed decision involves dichotomous outcomes, 

where the risk of two mutually exclusive choices are 

weighed against each other and the lower risk of the 

two is selected (i.e. dichotomous hypothesis testing). 
Decisions about dichotomous events “𝐴” and “�̅�” 

can be made by comparing risks 𝑅(𝐴) = 𝐶𝐴𝑃(𝐴) and 
𝑅(�̅�) = 𝐶�̅�𝑃(�̅�), respectively, where 𝐶𝐴 is the cost of 
not countering 𝐴 and 𝐶�̅� is the cost of countering �̅�. 
In this analysis, negative risks (i.e. profit, gain, etc.) 
are not considered.  We call these “prior risks” 
because they rely on the prior probability 𝑃(𝐴).  And 
as there are only two choices, 𝑃(�̅�) = 1 − 𝑃(𝐴). 
Event 𝐴 could be nearly anything.  In this paper it 
represents an “attack” and �̅� represents “no attack”. 
One chooses to believe an attack is the outcome if 
𝑅(𝐴) > 𝑅(�̅�), also written as follows: 

𝐶𝐴𝑃(𝐴) > 𝐶�̅�𝑃(�̅�) (1) 

This formulation indicates when it is favourable 
to attack without detection or intelligence.  Health 
insurers, for example, set premiums based solely on 
prior probability when they are not allowed to 
consider an individual’s specific pre-existing 
conditions that is normally detected by a test (Sox, et 
al., 2013). Given the multitude of detection 
capabilities fielded by most states today, use of 
equation (1) in isolation is not realistic.  However, the 
computation of these risks represents a necessary step 
leading to decisions that take into account detection 
systems.  The next step in this progression leads to 
Eq. (2), which is a dichotomous form of Bayes’ 
theorem that includes the probability of detection 
𝑃(𝑑|𝐴) and the probability of false-alarm 𝑃(𝑑|�̅�):  

𝑃(𝐴|𝑑)

𝑃(�̅�|𝑑)
=

𝑃(𝑑|𝐴)

𝑃(𝑑|�̅�)

𝑃(𝐴)

𝑃(�̅�)
 (2) 

The left-hand side of Eq. (2) is the ratio of the 
posteriors.  Given datum 𝑑, attack is more likely than 
not if the right-hand side of Eq. (2) is greater than one.  
Notwithstanding the costs, 𝑃(𝑑|𝐴)/𝑃(𝑑|�̅�) must be 
greater than 𝑃(�̅�)/𝑃(𝐴) and also greater than one.  
Costs are factored in by replacing the prior 
probabilities with the prior risks as in Eq. (3), leading 
to a likelihood ratio test (LRT):   

𝑃(𝑑|𝐴)

𝑃(𝑑|�̅�)
>

𝑅(�̅�)

𝑅(𝐴)
 (3) 

We call the left-hand side of Eq. (3) the likelihood 
ratio, L, and the right-hand side the critical likelihood 
ratio, L*.  Risk is minimized when the decision is 
made in accordance with the LRT.  Specifically, if the 
LRT is true, then L is greater than L*, and one takes 
action based on the belief that an attack is real.  
Otherwise, no action is taken.  Equations (1) and (3) 
are thus our models for rational behaviour, with and 
without detection, respectively.   

3 DATA ANALYTICS 

Risks in equations (1) and (3) will be per year per 
target state or alliance as derived from the Correlates 
of War (COW) Project historic war datasets (Sarkees, 
2010).  For illustrative purposes, North Atlantic 
Treaty Organization (NATO) states are arbitrarily 
chosen to be the collective target of attack.       

3.1 Dataset Typology 

The COW Project has published a traditional and 
expanded typology of war.  We use the latter.  COW’s 
Inter-State classification of wars is based upon the 
status of territorial entities, focusing on those that are 
classified as members of the state system.  This 
dataset encompassing wars that took place between or 
among recognized states where there are at least 
1,000 fatalities.  COW’s Extra-State classification of 
wars involves imperial and colonial wars.  The Intra-
State classification of wars encompasses different 
kinds of wars that take place predominantly within 
the recognized territory of a state.  The last category, 
Non-State wars, involve non-state territory or across 
state borders.  COW war data exists as rows of named 
wars that include start and end dates, combat deaths, 
outcome, and little else. A state’s population during a 
war, for example, is in a different dataset.  We analyse 
only the data available in the COW war datasets.  



 

 

The focus of this study is strategic war, which 
requires a level of resources achievable only by states.  
Therefore, only inter- and/or intra-state war data seem 
applicable, so the other datasets are not used. From 
1816-2007 there are 91 and 199 Inter- and Intra-State 
wars, respectively.   

3.2 Temporal Prior Probability 

The short treatment of temporal probability that 
follows is simplistic.  We use it, nevertheless, because 
of its illustrative value and because it quickly 
becomes apparent that the severity of war is much 
more important to arriving at risk-informed decisions 
than is temporal probability.     

For the prior probability of attack, 𝑃(𝐴), we begin 
by using the temporal statistics of the COW Inter-
State war dataset.  The time between wars is 
exponentially distributed where there is on average 
about one interstate war every two years, yielding an 
exponential distribution parameter 𝜆 = 0.5 𝑤𝑎𝑟𝑠/𝑦𝑟.  
The exponential distribution is fit to the data in Figure 
1. The fit has an r2 value equal to 0.93, indicating a 
good fit. Equivalently, the probability of there being 
one or more wars per year follows the Poisson 
distribution with the same parameter. Thus, in any 
given year there is a 31% chance that one war will 
occur somewhere in the world.  About 62% of the 
states are defensive in the wars (see Table 1).  And, 
because 46% of the wars comprising this data 
involved countries that are today part of NATO, there 
is approximately a 0.31 × 0.62 × 0.46 = 0.088 
probability each year that NATO will be attacked 
once. The average deaths and number of states 
participating in wars has remained nearly constant in 
the last 200 years. Thus, additional temporal changes 
across datasets do not warrant further consideration.     

3.3 Severity Probability 

The severity of war is needed to estimate 𝐶𝐴,  which 
is necessary to compute the risks in equations (1) and 
(3).  Previous research suggests that severity is 
probabilistic, in which case 𝐶𝐴 is equal to severity s 
times the probability that a war of severity S is equal 
to s, conditional on if an attack 𝐴 has occurred.  This 
is written as 𝑠𝑃(𝑆 = 𝑠|𝐴).  Severity has also been 
modelled as s multiplied by the exceedance 
probability, which we write here as  𝑠𝑃(𝑆 > 𝑠|𝐴).  

3.3.1 Power-Law 

Lewis Fry Richardson was the first to plot the 
logarithm of the frequency of deaths in violent 
conflict against the logarithm of their severity, 
revealing a straight line with a negative slope, 
suggesting the applicability of power-law statistics 
(Richardson, 1960). Exceedance probabilities are 
obtained simply by dividing the frequencies by the 
total number of conflicts. Cederman affirmed 
Richardson’s work using COW data and reports a 
slope of negative 0.41 (Cederman, 2003).  However, 
Cederman’s log-log plot displays a slight curvature in 
the vicinity of 1,000 and 10,000 deaths.  This 
curvature may indicate that the power-law is not the 
best distribution to be applied, that there is 
insufficient data, that the wrong kind of data has been 
used, or that a combination of these errors applies.   

Pursuing a hunch that more data is needed to 
obtain a valid power-law result, we combined the 
COW Inter-State and Intra-State datasets, obtaining 
in this case a value of q=0.70 with an r2 of 0.99. This 
result is shown as the dashed orange line in Figure 2.  
The red-dashed line is for q=1, indicating the smallest 
valid q value.  Above this line, the power-law is 
invalid as a probability distribution. Consistently, 
researchers report values that are less than one, ours 
included. Having proved the hunch incorrect, we 
sought to apply another probability distribution.   

3.3.2 Log-Normal Distribution 

The curvature seen in the power-law fits suggest that 
the log-normal distribution might be better suited to 
model the data (Benguigui & Marinov, 2015).  
However, because the COW Inter-State data only 
includes wars having a minimum of 1000 deaths, it is 
also necessary to combine Inter- and Intra-State 
dataset, thus providing statistics below this minimum.  

A log-normal ( = 3.6,  = 0.81) density function  
𝑃(𝑆 = 𝑠) is seen to closely follow the data. This is 
indicated by the blue-dashed, bell-shaped curve in 
Figure 2. COW data is indicated by the black line with 
black triangles. The r2 obtained by comparing these 
two curves is 0.99, indicating an excellent fit.    

 

Figure 1: Exponential distribution fit (=0.51 wars/yr) to 

COW Inter-State war data where fit goodness r2=0.93. 
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To highlight the small differences in cases of wars 
exceeding one million deaths, an expected result in 
any nuclear conflict, exceedance probability curves, 
P(S > s), are included.  In Figure 2 the log-normal 
exceedance probability is the blue-dashed curve 
above the probability density functions following the 
logarithmic scale on the right side of the graph. COW 
data is indicated by a black curve with black squares. 
The log-normal fit fails to match the COW data for 
high death totals. This result is in contrast to the 
extremely good fit provided by the power-law.  

Despite the overall excellent fit of the log-normal, 
we are motivated to seek an alternative method that 
better fits the high severity data.  The excellent fit to 
this data by power-law, even in the case of combining 
the Inter- and Intra-State datasets, indicates that there 
is an underlying phenomena favouring higher 
severity.  The log-normal distribution is a symmetric 
distribution that does not favour upper statistics.  Use 
of the log-gamma distribution, however, may solve 
this problem as it is an asymmetric distribution that 
favours the higher range (Halliwell, 2018).  

3.3.3 The Effect of Alliances 

Combining Inter- and Intra-State datasets creates a 
dataset with deaths below 1000, enabling log-normal 
fit with a high r2 value, but it fails to enable a fit the 
high-magnitude war data points.  Mixing these data 
sets may add error to the analysis.   

Figure 3 is a plot of the base-10 logarithm of 
deaths versus the number of allies in the named 
interstate wars.  It appears that part of the interstate 
war data correlates with the number of alliances.  
However, all of the data cannot be satisfactorily fit 
using a single exponential line.  The best fit to all of 
the data is poor (r2=0.1943).  The best fit to the wars 
involving five or less participants, the blue dots, is 
extremely poor (r2=0.0552).  The best fit to wars 
having greater than five participants, marked with red 
dots, begins to show some correlation (r2=0.5672).  A 
partial correlation can only adversely affect the 
statistics and obfuscate a more applicable probability 
distribution. Therefore, we ungroup the Inter-State 
dataset so that deaths are not the total of named wars 
for all allies.   Ungrouping also creates a larger dataset 
that includes deaths below 1,000. The number of wars 
also increases from 91 to 319 and more than half of 
the wars have less than 10,000 fatalities.   

Removing the named-war grouping helps with 
data analysis, but its potential significance is also 
worth discussing.  Jackson and Nei reported that there 
were ten times fewer wars between 1950 and 2000 as 
a result of political, military, and economic alliances 
(Jackson & Nei, 2015).  In other words, peace and war 
are at least partly the result of a network phenomenon.  
In the instant case, however, removing the effect of 
alliances helps better understand the state 
individually as a rational actor. 

 
Figure 2: Power-law (P-L) and log-normal (L-N) fit to COW Inter- and Intra-State war datasets. 



 

 

3.3.4 Log-Gamma Distribution 

As with the log-normal, the log-gamma is a 
distribution of the log of datum. Probability density 
functions derived from both COW data and a log-
gamma distribution ( = 9.0,  = 0.39) are indicated 
in Figure 4. The fatalities used to derive the curves 
are from individual rows in the Intra-State dataset, not 
the sum of fatalities for respective named wars 
involving multiple states. The r2 of the log-gamma fit 
compared to the COW data is 0.99, indicating an 
excellent fit.  Equally important, the log-gamma fit 
holds for s > 106. This is indicated by the exceedance 
probability curve that follows the logarithmic scale on 
the right-side of Figure 4. A side effect of de-
grouping named wars is that the maximum number of 
deaths experienced for a given war does not exceed 
107.  Furthermore, because the P(S>s) curve follows 
the complement of the integral of P(S=s), there is no 
data points for P(S>107).  To check the fit for these 
high values, we compare the average slope of the 
power-law and log-gamma curves between P(S>104) 
and P(S>108).  We find them in good agreement (0.62 
versus 0.55).  Thus, the log-gamma distribution fits 
the entire range of severity covered by the COW data 
when the wars are analysed only by nation state. The 
slope of the log-gamma increases in negativity, 
however, so that the distribution is valid for higher 
death values. Specifically, the slope of the P(S>s) 
curve between 108 and 109 is log(1.110−3 −
 9.510−5)  =  −3.0.  As this slope is less than 
negative one and decreasing, the fit is valid.  

4 RISK MINIMIZATION  

Keeping peace requires that states not take undue 
action while avoiding inaction that might invite 
attack.  This delicate balance can be optimized by 
minimizing expected combat deaths, taking into 
account attack detection and false-alarm 
probabilities, which we can now do using prior 
probabilities that span both conventional and nuclear 
levels of fatalities. Exactly how and why becomes 
clearer in the presence of a game-theoretic model of 
war, which we provide first and then incorporate into 
a likelihood-ratio analysis.  It is then reasonable and 
practical to assume that the probability of detection is 
exactly one.  Most detection systems provide nearly 
this level of performance and the assumption leads to 
a single risk of inaction with and without detection, 
which makes more tractable an analysis of the impact 
of false-alarm probability on attack decisions.   

4.1 Game-Theoretic Analysis 

Figure 5 shows the win-loss distribution of deaths for 
attackers and defenders from the un-grouped Inter-
State dataset based on COW’s assessment of what 
constitutes “win” and “lose”.  Key information from 
this graph is summarized in Table 1.  The “Other” 
category in Table 1 includes ties, transformations, and 
stalemates. The percentages are the number of wars 
in the category divided by the total number of wars, 
where the total for the six categories is 100%.   

 
Figure 3: Inter- and Intra-State COW dataset deaths versus the number of states indicate an inconsistent effect caused by 

alliances, where r2 for 2 to 5 state wars is very weak (0.055, blue dots and blue line), moderately good for 6 – 29 states 

(0.57, red dots and red line), and weak for the combined data (0.19, black dashed line).   

 



 

 

Table 2 reconciles the “max deaths” information 
in Table 1 with game-theoretic strategies.  Given that 
an attack has already occurred, we hypothesize that 
attackers and defenders have two available strategies: 
“escalate” and “deescalate.” Both take into account 
the strength of a state’s motives and resources.  Thus, 
use of the deescalate strategy may be the result of 
previous escalation having depleted the state’s 
national will and resources.  The maximum deaths 
experienced by a state is chosen to be the limit of 
losses a state would accept in a war for the particular 
strategy.  For example, given that 7.5M is the 
maximum loss a state (U.S.S.R. in WWII) has 
endured by way of defensive escalation, this is taken 
to be the maximum loss for the strategy.  Conversely, 
3.5M is the maximum loss of an attacker (Germany 
in WWII) endured via offensive escalation.  
Maximum losses for other strategies are similarly 
derived.   

The game-theoretic model of Table 2 leads to two 
Nash Equilibrium points (Nash, 1950), one at 
escalate-deescalate, the other at deescalate-escalate.  
These equilibrium points are consistent with the fact 
that wars, once started, normally escalate and result 
in high losses no matter if the attacker or defender is 
the winner.  The escalate-escalate cell is not an 
equilibrium point because mutual escalation leads to 
losses that are greater than losses in adjacent cells.  
Eventually, conflicts move to escalate-deescalate or 
deescalate-escalate where a winner and loser 
eventually emerge.  The deescalate-deescalate cell is 
normally unstable, which is why only 18% of the 
wars end in this state.   

The strategies in Table 2 are also consistent with 
the distributions of war severity. Escalation or 
deescalation is a multiplicative increase or decrease 
in the expense of human resources. Where 𝐸𝑛 is a 
random variable representing the fractional increase 
or decrease of combatants during each escalation or 
deescalation, severity is random variable equal to the 
products of these changes, 𝑆𝑁~𝐸1 × 𝐸2 × … 𝐸𝑁, 
resulting in the applicability of a logarithmic 
distribution. In other words, leaders escalate or 
deescalate based on the quantity of deaths already 
incurred.  Relative increases or decreases follow a 
logarithmically distributed process (Ott, 1990).  
Noting that gamma and Poisson distributions are 
conjugates, what is more challenging to understand is 
why three of the win-lose distributions in Figure 5 
appear to be log-gamma distributions (~L-G), but 
only the defend-win curve appears to follow a log-
normal distribution (~L-N).  The defend-win category 
is comprised of far greater losses than any other 
category (i.e. 17M versus 6.4M for defend-lose, 5.4M 
for attack-lose, and 0.8M for attack-win).   

Symmetry of the defend-win distribution may 
indicate that there are underlying random variables 
that are not strictly positive numbers as are fatalities.  
Economy and infrastructure are examples of variables 
that could also be negative and whose effect might be 
in play. More likely, a defender who is escalating in 
response to an attacker who is escalating increasingly 
relies on the benefits of alliances as discussed in 
section 3.3.3.  Indeed, most of the fatalities associated 
with the log-normal defend-win curve are from the 
many allied countries in WWII.   

 

Figure 4: COW Inter-State war and log-gamma (L-G) probability density curves, P(S=s), and exceedance probability 

curves, P(S>s), where density curves track the left-side scale and the exceedance curves track the right-side scale. 



 

 

4.2 Minimization without Detection 

Table 3 reports the annual risk of inaction for NATO 
based on probabilities in Table 1 and Figure 5. Risk 
is the severity probability in the row times the 
midpoint of the range of deaths.  The result is then 
multiplied by 0.088, as estimated in section 3.2, to 
calculate the risk per year for NATO.  Numbers are 
rounded to two significant figures. Two sets of 
probabilities and two sets of risks are provided, one 
from the COW data and the other based on the 
defend-lose log-gamma fit.  The rightmost columns 

are the “expected risk of inaction” because they are 
the average number of deaths that will result from war 
each year if nothing is done.  Given the exponential 
scale, the data and model agree reasonably well until 
the data ends. Although we don’t distinguish between 
deaths from conventional or nuclear weapons, the 
number of deaths resulting from nuclear weapons 
used in WWII suggest that 100K or more deaths are 
nuclear-war-level.  What one can conclude from this 
table, then, is that the risk of war increases for 
increasing ranges of fatalities, making nuclear war the 
highest risk despite decreasing in probability.  This is 
true whether from surprise attack or a slow build-up.   

In the absence of a detection capability, risk-
informed decision can be made based only on the 
prior probabilities in Table 3.  A state may consider 
attacking its foe to pre-empt an attack that it thinks is 
probable.  The predilection to attack, or the likelihood 
of being attacked, would depend on the risk of action 
weighed against inaction. Normally there will be 
many scenarios for action, and each must be weighed 
against inaction. 

 

Figure 5: Attack-defend-win-lose distributions for wars as a function of the log of severity. 

Table 2: Game model based on maximum win-loss deaths 

(millions) with Nash Equilibria indicated (circled). 
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Table 1: Attack-Defend-Win-Lose statistics, based on 

COW definitions, and parametric fits to the data.  

 

 Attack (38%) Defend (62%) 

W
in

 (
4

4
%

) 17% 27% 

0.25M max deaths 7.5M max deaths 

 L-G(10,0.32) r2=0.99 L-N(3.5,1.2) r2=0.95 

=2.9, =0.99 =3.5, =1.2 

Lo
se

 (
3

8
%

) 9% 29% 

3.5M max deaths 1.8M max deaths 

L-G(8.0,0.48) r2=0.88 L-G(11,0.31) r2=0.97 

=3.9, =1.1 =3.4, =1.0 

O
th

er
 (

1
8

%
) 12% 6% 

0.50M max deaths 0.75M max deaths 

L-G(17, 0.20) r2=0.84 L-G(12, 0.24) r2=0.96 

=2.8, =1.3 =3, =1.0 
 



 

 

Pre-emptively attacking may reduce the number 
of fatalities through destroying part of the enemy’s 
attack capabilities.  A rational NATO alliance would 
do so only if the risk of action is less than the 
corresponding row in Table 3.  In the case of the row 
designated “1M < Dead  10M”, for example, the risk 
of the pre-emptive attack would need to be less than 
17K, based on data (12K modelled).  Solving Eq. (1), 
the maximum consequences of incorrect action is 
𝐶�̅� = 17,000 × (1 − 0.088)/0.088 = 180,000. In 
other words, if NATO were confident that no more 
than 180K dead would result in a pre-emptive attack, 
then the attack in this case is rational from a strictly a 
fatalities perspective.  Again, this scenario is 
appropriate only if the alliance expects an attack.     

4.3 Minimization with Detection 

A pre-emptive strike based solely on prior probability 
of combat deaths is not realistic given the many 
detection systems fielded. However, computing the 
risk of action and inaction per Eq. (1) is useful 
because these quantities are needed in the right-hand 
side of Eq. (3).    Equation (4) below specifies the 
right-hand side of Eq. (3), the Bayesian detection 
criteria, using details from Table 1 (i.e. L-G, 𝛼 = 11 
and 𝛽 = 0.31) where the consequence of action 𝐶�̅� is 
the only unknown quantity.  Modelled severity, rather 
than data, is used to enable a study of extreme conflict 
that might cause between 10M and 1B fatalities:   

𝐿∗ =
𝐶�̅� × (1 − 0.088)

∆𝑠 × L-G(log(s); 11,0.31) × 0.088
 (4) 

𝐿∗ from Eq. (4) can be used in Eq. (3) to study 
possible decisions involving alert bomber forces, for 
example, that can be launched on warning of attack 
and recalled if there is a false-alarm.  Alert forces 
must be supported by a continuously functioning 
attack detection system that is survivable through all 
foreseeable conflicts. If NATO policy is to launch its 

bombers upon warning of inbound ballistic missiles, 
similar to U.S. policy (U.S. Dept. of Defense, 2018), 
there are at least two possible outcomes with risks that 
are defined in terms of detection and false-alarm: the 
system fails to detect an actual attack, no action is 
taken, resulting in the loss of the alert force and 
fatalities proportional to the number of missiles; or 
the system reports a false-alarm, prompting the 
launch of the alert forces, causing the enemy to make 
its own launch-on-warning decision.  These two 
outcomes are considered in turn using Eq. (4). 

Being a number close to, but necessarily less than 
one, the detection probability proportionally reduces 
the threat that the NATO alert forces pose to an 
enemy.  This proportionally increases the threat of 
attack by an opponent who has intelligence about the 
detection probability or is capable of reducing it 
through cyber- or information-operations. However, 
because detection probabilities approach one and 
false-alarm probabilities are normally much less than 
one, the ratio of detection over false-alarm 
probabilities is numerically dominated by the false-
alarm value.  For this reason, it is correct and practical 
to assign the probability of detection a perfect value 
of one and assume that only the false-alarm 
probability changes the likelihood ratio 𝐿. 

Table 4 reports 𝐿∗as a function of 𝐶𝐴 and 𝐶�̅�.  
NATO should launch its bombers if the likelihood 
ratio of its detection system 𝐿 is greater than the 
corresponding 𝐿∗.  However, 𝐿∗ cannot be less than 
one or arbitrarily high.  An 𝐿 value less than one 
violates the basis on which Eq. (3) was derived.  An 
arbitrarily high 𝐿 implies a false-alarm probability 
that is unachievably low.  For example, a difficult-to-
achieve 0.001 false-alarm probability for Synthetic 
Aperture Radar (Li, 1994) yields 𝑙𝑜𝑔(𝐿) = 𝑙𝑜𝑔(1/
0.001) = 3.  In Table 4, this and similar values are 
coloured yellow indicating that it may be 
unachievably low.  Red cells indicate invalid or 
values that are too low.  Green cells indicate nominal 
values. 

Table 3: Annual risk of attack on NATO countries in expected deaths. 

Severity 
 sn 

Severity Range 
sn-1 < Dead  sn 

Δs 
= sn – sn-1 

Probability for Severity Range Expected Annual Risk of Inaction 

COW Defend-Lose L-G Defend-lose Based on Data Based on Model 

10 1 < Dead  10 9 0.00 0.000016 0 0 

100 10 < Dead 100 90 0.088 0.041 1 0 

1K 100  < Dead 1K 900 0.31 0.30 24 23 

10K 1K < Dead 10K 9K 0.37 0.38 300 300 

100K 10K < Dead  100K 90K 0.13 0.20 1000 1,600 

1M 100K < Dead  1M 900K 0.077 0.066 6,100 5,300 

10M 1M < Dead  10M 9M 0.022 0.016 17,000 12,000 

100M 10M < Dead  100M 90M No Data 0.0029 No Data 23,000 

1B 100M < Dead  1B 900M No Data 0.00044 No Data 35,000 

 



 

 

The consequences of acting on a false-alarm are 
potentially far more serious than the consequences of 
inaction.  For example, a technical glitch could result 
in a full-scale nuclear war.  Thus, deterrence is as 
much about detection and false-alarm as it is about 
the quantity and destructiveness of weapons.   
Consider again the last row in Table 3 for which there 
is COW data, marked “1M < Dead  10 M”, where 
the data indicates a severity probability of 0.022 and 
an annual risk to NATO countries equal to 17K 
deaths.  For this case, it would be rational for NATO 
to take an action intended to negate war only if that 
action resulted in annual risk less than 17K.  One 
example of such an action is to put strategic bombers 
on alert so they can be launched before being 
destroyed in a surprise attack.  While this action may 
have economic impact, it risks few NATO combatant 
lives directly.  So long as this action increases the risk 
to the enemy for attacking, the enemy cannot 
rationally choose to attack because the risk table 
applies equally to them.  Thus, the U.S. 
Administration’s recent decision to put bombers back 
on alert makes sense provided that the enemy is 
confident their attack would be detected and that the 
bombers could put at risk more of the enemy’s lives 
than would be saved in a pre-emptive attack.   

In all cases, robust and hardened detection and 
alerting systems are paramount.   These systems 
require hardware, software, and human operators that 
don’t automatically reject the possibility of a surprise 
attack.  Deterrence is also improved if detection 
information is shared with the enemy because it helps 
ensure they too will react correctly to alarms.  If the 
log-gamma model results are to be believed, even for 
a just a few rows past the data, then the risk continues 
to increase and the maximum false-alarm probability 
rapidly decreases to unachievably small values.  This 

trend, partially seen in Figure 6, eventually reverses, 
but well past the end of the table where human 
population is exceeded.  This result holds despite all 
of the modelled uncertainties and is true even though 
we have replaced the power-law with a distribution 
that is probabilistically valid.  The high risk behaviour 
of war remains and it leads to the following 
observation.  A sufficiently low false-alarm 
probability to justify a launch-on-warning decision is 
not achievable if that decision results in an arbitrary 
scale of retaliation.  However, the same is not true if 
the scale of the attack is known.  For example, if 
satellites are able to confirm that only ten missiles are 
inbound and each can kill at most 1M, then the row 
“1M < Dead  10M” applies and launch-on-attack is 
rational for log-likelihood ratios equal to and greater 
than 0.80. Referring to Table 4, these are cells in the 
𝐿𝑜𝑔(𝐶𝐴) = 4.09 row, to the right of the 𝐿𝑜𝑔(𝐶�̅�) =
4 column.  

Table 4: 𝐿𝑜𝑔(𝐿∗) as a function of 𝐿𝑜𝑔(𝐶𝐴) and 𝐿𝑜𝑔(𝐶�̅�), where red cells are invalid or too low, green contain 
normal and useful values, and yellow indicates that the required false-alarm probabilities may be unrealistic. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 6: Log of attack risk vs. log deaths.   

1

2

3

4

5

2 3 4 5 6 7 8 9

Lo
g 

R
is

k

Log Deaths

COW

Log-Gamma



 

 

One can now make sense of power-law results by 
computing pseudo q-values based on the log of the 
slope of the upper end of exceedance probabilities for 
the log-normal and log-gamma fits.  The only strategy 
with a pseudo q-value greater than one corresponds to 
the log-normally distributed defend-win case.  See 
Table 5 below. Thus, for high-magnitude war only 
defensive strategies generate bounded results.     

5 CONCLUSION 

Risk of military attack, in terms of combat fatalities, 
can be minimized using a Bayesian detection criteria 
based on prior probability distributions derived from 
COW Inter-State war data.  Use of the power-law in 
this context is invalid and should be abandoned.  A 
game-theoretic model with two Nash Equilibrium 
points help explain why combatant fatalities follow a 
log-gamma or log-normal probability distribution 
depending on if a state is offensive or defensive. De-
correlating combat fatalities from alliance effects 
exposes the log-gamma structure of the defend-lose 
case and enables a calculation of attack risk per year 
for ranges of deaths in powers of ten. Further, the data 
indicate that war occurs with predictable temporal 
frequency where the likelihood of one or more wars 
in a year follows the Poisson distribution.  After being 
initiated, a war escalates or deescalates proportional 
to the combat losses already incurred.  The data also 
shows that the risk of nuclear war level fatalities 
increases despite decreasing in probability.   Taking 
into account detection and false-alarm probabilities, 
an LRT advises that it is rational to escalate only 
when the consequence of inaction and action are 
about equal in magnitude, corresponding to nominal 
false-alarm maxima.  A corollary is that act-on-
warning is justified only if the detection system 
indicates an upper limit of impending fatalities.  
Lastly, only defensive strategies have a convergent 
mean for wars having fatalities greater 108.   

In future work, a Bayesian detection criteria 
could be applied to automated detection of cyber-
attack, informed by the correct prior and taking into 
account both positive and negative consequences. 
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The opinions, conclusions, and recommendations 
expressed or implied are the authors’ and do not 
necessarily reflect the views of the Department of 
Defense or any other agency of the U.S. Federal 
Government, or any other organization.  

Table 5. Pseudo q-values for log-gamma and log-normal 

exceedance probabilities based on indicated COW deaths.  

 

 Attacker(s) Defender(s) 

Win q=0.83, 0.8M total q=1.2, 17M total 

Lose q=0.5, 5.4M total q=0.78, 6.M total 
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